

Synthesis of Methanethiol from Carbonyl Sulfide and Carbon Disulfide on (Co)K-Promoted Sulfide Mo/SiO₂ Catalysts

Oliver Y. Gutiérrez,[†] Christoph Kaufmann,[†] and Johannes A. Lercher*

Lehrstuhl für Technische Chemie 2, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany

ABSTRACT: The catalytic properties of a series of (Co)K-promoted Mo sulfide catalysts supported on SiO₂ were explored in the synthesis of methanethiol from carbonyl sulfide (COS) and CS₂. MoS₂ was very active for the conversion of COS, but allowed only low yields of CH₃SH because of the parallel decomposition of COS to CO and H₂S and the reduction of CH₃SH to CH₄. CS₂, on the other hand, was completely converted to CH₃SH with high yield below 570 K on MoS₂. The

formation of CH_4 , however, dramatically decreased the yield of CH_3SH above 570 K. The addition of K⁺ cations decreased the conversion of both reactants, but also reduced the rate of decomposition/reduction reactions. The doubly promoted CoK-Mo catalyst led to the highest conversions with moderate to high yields of methanethiol. We conclude that the addition of K⁺ cations generates very weak adsorption sites, suppressing so the C–S bond cleavage. These sites catalyze, however, COS disproportionation. Accessible Co and Mo sites are part of the active sites for all reactions observed. All catalytic active sites are concluded to be on the edge of MoS_2 slabs.

KEYWORDS: methanethiol, carbonyl sulfide, carbon disulfide, K-Co-Mo sulfide catalyst

1. INTRODUCTION

Methanethiol (methyl mercaptan, CH_3SH) is a key intermediate in the production of several important specialty chemicals such as methionine.¹ Thus, improving and developing new synthesis routes for methanethiol is of significant industrial interest. Large scale production of methanethiol is based on the thiolation of methanol.^{1,2} However, it would be economically attractive to produce CH_3SH from less expensive reactants, such as carbon oxides, hydrogen sulfide, and hydrogen.

The synthesis of methanethiol from CO and CO₂ on transition metal sulfides supported on alumina was reported in the early work of Olin et al.,³ whereas Mn- and W-based sulfide catalysts promoted with alkali metals were applied later.⁴ The formation of methanethiol from mixtures of CO and H₂S was subsequently investigated over group Vb metal oxides supported on TiO₂ and Al₂O₃.^{5–7}

In recent years, the synthesis of methanethiol from H_2S containing synthesis gas (H_2S -syngas) on a variety of sulfide materials has received significant attention again.^{8,9} The outstanding CO conversion and CH₃SH selectivity set the K-promoted Mocatalyst apart from other evaluated catalysts.

A two-stage process for the synthesis of methanethiol was devised by the authors as reported in refs 10,11. The first stage consists in the liquid-phase reaction of elemental sulfur with CO- H_2 mixtures to form carbonyl sulfide (COS) and H_2S . In the second stage, a plug-flow reactor is used to synthesize methanethiol from mixtures of COS, H_2S , and H_2 . The reactions in the second stage were catalyzed by Mo-sulfide catalysts containing substantial concentrations of potassium and being supported on SiO₂ and Al₂O₃.^{11,12}

The two-stage approach allows also to better understand how the H_2S -syngas mixture reacts to form CH_3SH . From the mechanistic investigations it is concluded that COS undergoes disproportionation to CO_2 and CS_2 and that the latter is hydrogenated to methanethiol. The addition of high concentrations of potassium leads to the formation of a "K-decorated" MoS₂ phase that enhances the COS disproportionation, but inhibits undesired reactions. However, the sulfide catalyzed synthesis of methanethiol from H₂S-containing synthesis gas is far from being optimized and completely understood. Stimulated by reports in the literature¹³ we compare here the impact of double promotion, that is, K–Co, on the methanethiol synthesis using COS and CS_2 as reactants aiming to provide a knowledge basis to improve catalysts for the synthesis of methanethiol from H₂S containing synthesis gas.

Cobalt was used as a second promoter because it is known to increase the reactivity of MoS_2 for hydrogenation.¹⁴ Thus, a series of K- and CoK- promoted Mo catalysts supported on SiO₂ were synthesized, characterized, and explored with respect to the catalytic conversion of mixtures of COS or CS₂ with H₂S and H₂ to methanethiol.

2. EXPERIMENTAL SECTION

2.1. Catalyst Preparation. The oxide catalyst precursors were prepared by the incipient wetness impregnation of SiO₂ (AEROSIL 90, Degussa). Mo and K–Mo catalysts were prepared in a single impregnation step from aqueous solutions of ammonium heptamolybdate hexahydrated ((NH₄)₆Mo₇O₂₄· 6H₂O, Aldrich, 99.9%) and potassium molybdate (K₂MoO₄, Sigma Aldrich, 98%), respectively. The resulting materials were dried at 353 K for 10 h and treated at 773 K in synthetic air for 12 h.

Received:	September 6, 2011
Revised:	October 6, 2011
Published:	October 06, 2011

material	Co (wt %) (nominal) experimental	K (wt %) (nominal) experimental	Mo (wt %) (nominal) experimental	BET surface area $(m^2 \cdot g^{-1})$	pore volume $(cm^3 \cdot g^{-1})$	
SiO ₂				88	0.15	
Mo/SiO ₂			(11.3) 13.3	78	0.12	
KMo/SiO ₂		(9.2) 8.8	(11.3) 11.4	50	0.06	
CoKMo/SiO ₂	(2.3) 1.8	(9.2) 8	(11.3) 11.5	25	0.03	
^{<i>a</i>} BET surface area and pore volume determined by N ₂ physisorption.						

Table 1. Nominal and Experimental Metal Concentrations in the Ox	e Oxide Materials"
--	--------------------

The Co-containing catalysts were prepared by the impregnation of the K—Mo oxide material with an aqueous solution of cobalt nitrate hexahydrate $(Co(NO_3)_2 \cdot 6H_2O, Fluka, 98\%)$ followed by the same thermal treatment as described above. The molybde-num loading was 1.17 mmol per gram of material, whereas in the promoted catalysts the molar K/Mo and Co/Mo ratios were 2 and 0.33 respectively. The equivalent nominal compositions were 11.3, 9.2, and 2.3 wt % in Mo, K, and Co respectively. The oxide catalyst precursors are denoted as Mo/SiO₂, KMo/SiO₂, and CoKMo/SiO₂.

2.2. Characterization of the Catalysts. *Elemental Composition.* The molybdenum, potassium, and cobalt content of the oxide precursors were determined by atomic absorption spectroscopy (AAS) using a UNICAM 939 spectrometer.

Textural Properties. The textural properties of the oxide precursors were determined by nitrogen adsorption—desorption using a PMI automated BET sorptometer. The samples were degassed in vacuum at 673 K for 2 h before adsorption.

X-ray Diffraction. The oxide precursors and the sulfide catalysts after activity tests were characterized by X-ray diffraction (XRD). Samples of the used catalysts were measured after cooling down the reactor to room temperature in nitrogen flow. A Philips X'Pert Pro System (CuK α 1-radiation, 0.154056 nm) operating at 45 kV and 40 mA was used for recording XRD. Measurements were carried out using a step size of 0.017° (2 θ) and 115 s as count time per step.

NO and CO_2 Adsorption. NO and CO_2 adsorption were determined by a pulse technique using a flow apparatus equipped with a mass spectrometer (QME 200, Pfeiffer Vacuum). A sample of 0.1 g of catalyst was loaded in a quartz reactor and activated in situ under 10 vol % H₂S/H₂ at 673 K for 3 h. After cooling to the adsorption temperature, that is, 300 K for NO and 358 K for CO₂, the reactor was flushed with high purity He for 5 h. Pulses of 10 vol % of NO or CO₂ in He were introduced every 30 min. The total concentration of gas adsorbed was calculated as the sum of the uptakes per pulse.

2.3. Kinetic Measurements. The synthesis of CH₃SH from COS or CS₂ was investigated with the sulfide form of Mo, K–Mo, and Co–K–Mo catalysts. In the following the sulfide catalysts are denoted simply as MoS₂/SiO₂, KMoS/SiO₂, and CoKMoS/SiO₂. Prior to the activity tests, samples of 0.5 g of the catalysts (particle size 250–500 μ m) were sulfided in 10 vol % H₂S/H₂ at 3 MPa and 673 K for 12 h. Kinetic measurements were carried out in an experimental setup comprising a semibatch reactor and a plug-flow reactor in serial arrangement. Pure H₂ or CO-H₂ mixtures were bubbled through liquid sulfur in the semibatch reactor to generate either COS-H₂S or H₂-H₂S mixtures as previously reported.^{9,10} These mixtures were diluted with the necessary concentrations of H₂, N₂, and/or CS₂ and introduced to the plug-flow reactor, where the synthesis of methanethiol was performed. CS₂ was introduced to the setup using

a Shimadzu LC-20AT pump and vaporized at 423 K before mixing with the gas flow.

Using COS as starting reactant, the typical composition of the feed was 7.33 vol % COS, 3.08 vol % H_2S , and 17 vol % H_2 in N_2 $(H_2/COS ratio of 2.4)$. The effect of the $H_2/COS ratio (2.4, 3.2, 1.4)$ and 5.2) was explored with a fixed COS concentration of 8 vol % and a H_2/H_2S ratio of 4.3. In the synthesis of CH_3SH from CS_{24} the composition of the feed was 8.5 vol % CS_2 , 18 vol % H_2S_2 , 50 vol % H₂, and 23 vol % N₂ (H₂/CS₂ ratio of 5.9). These compositions referred to the gas mixture used in the plug-flow reactor. All reactions were performed at a constant pressure of 3 MPa and temperatures ranging from 420 to 673 K. The gas hourly space velocity (GHSV), defined as (volumetric flow rate). (volume of the catalyst bed)⁻¹ was kept constant 89 min⁻¹ in all experiments by diluting the reactant mixture in N2. Absence of transport artifacts was confirmed in preliminary experiments with varying catalyst particle size and flow rates. Samples were taken after reaching steady state in steps of 15 K and analyzed by gas chromatography using a Shimadzu GC 2014 equipped with a packed Haysep Q and a packed molecular sieve (13X) column.

3. RESULTS

3.1. Elemental Composition and Textural Properties. The metal concentration, surface area, and pore volume of the oxide catalysts are compiled in Table 1. The composition of metals in the oxide catalyst precursors is very similar to the metal concentration used in the precursor mixture during preparation. Table 1 shows that the surface area and pore volume of the materials decrease with the loading of metal oxides along with the increase in the density of the material. The Brunauer–Emmett–Teller (BET) surface area and the pore volume of CoKMo/SiO₂ was lower than what was expected after incorporating 1.8 wt % of Co, which may suggest that some pores were blocked in the parent material during the preparation procedure.

3.2. X-ray Diffraction Measurements. The X-ray diffractograms of the oxide precursors and the corresponding sulfide catalysts after the activity tests are shown in Figures 1a and 1b, respectively. The broad signal between 15 and $35^{\circ}(2\theta)$ evidence the amorphous nature of the silica support. A crystalline structure of silica would produce the main reflection at around 26° (2 θ) instead of a broad signal (see for instance quartz, PDF no. 01-074-0764). All other reflections in the diffractogram of Mo/SiO_2 are attributed to orthorhombic MoO₃ (PDF no. 00-001-0706). The oxidic KMo/SiO₂ catalyst shows a mixture of K₂MoO₄ (PDF no. 00-024-0880) and K₂Mo₂O₇ (PDF no. 00-036-0347). For the CoKMo/SiO₂ catalyst, the addition of Co modifies the proportion of K- and Mo- oxides. The fraction of K2M02O7 increases while that of K₂MoO₄ decreases. However, slight shifts of the peak positions compared with the reference PDF data could indicate a mixture of potassium molybdenum oxides with different stoichiometries.¹⁵

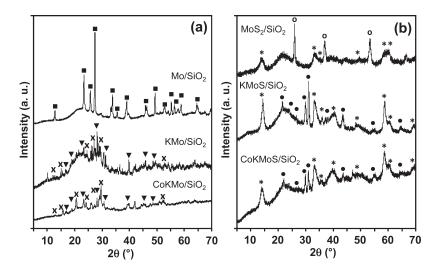


Figure 1. XRD diffractograms of the oxide precursors (a) and sulfided used catalysts (b). MoO_3 (\blacksquare), K_2MoO_4 (\triangledown), and $K_2Mo_2O_7$ (x) in (a); MoS_2 (*), MoO_2 (\bigcirc), and K_2SO_4 (\blacklozenge) in (b).

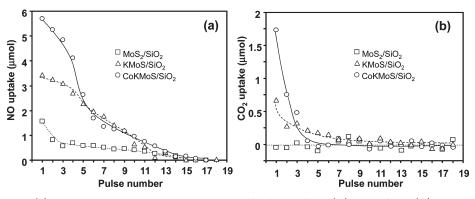
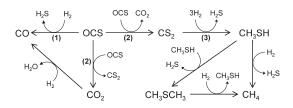
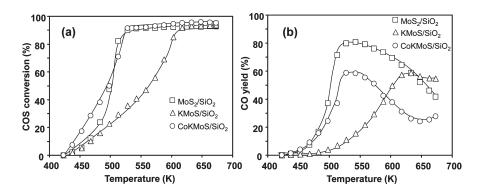
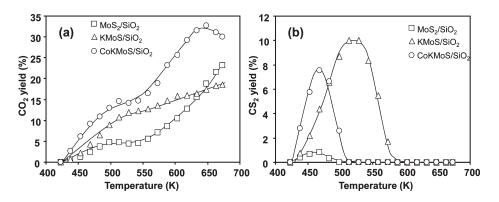



Figure 2. NO (a) and CO₂ (b) uptake at 300 and 358 K respectively on sulfided MoS₂/SiO₂ (\Box), KMoS/SiO₂ (Δ), and CoKMoS/SiO₂ (\bigcirc).

Evidence of crystalline Co-containing phases is not found in the diffraction patterns, probably because the concentration of cobalt is too low.

The XRD of the sulfide catalysts collected after the activity tests are shown in Figure 1 b. Regardless of the oxide species present in the oxide precursor, all sulfided catalysts showed the presence of MoS_2 (PDF no. 00-024-0513) as the main crystalline phase. The diffractogram of the MoS_2/SiO_2 used catalyst showed some reflections corresponding to MoO_2 (PDF no. 00-033-0929) indicating incomplete sulfidation. In the sulfide and used KMoS/SiO₂ and CoKMoS/SiO₂ catalysts, the K₂SO₄ phase (PDF no. 00-003-0608) was also detected. This Mo-free phase formed during the reaction as discussed in ref 11.


3.3. NO and CO₂ Adsorption Measurements. The active sites in the sulfide catalysts were characterized by means of NO and CO₂ adsorption because NO adsorbs on exposed cations of MoS₂, whereas CO₂ selectively adsorbs on basic sites.^{16,17} The uptake of NO and CO₂ per pulse on sulfide MoS₂/SiO₂, KMoS/SiO₂, and CoKMoS/SiO₂ is presented in Figure 2. Although there are marked differences in the starting uptakes of the samples, the uptake decreases to zero as the maximum adsorption capacity of the sample is reached. The NO uptake on the MoS₂/SiO₂ sample was rather low (69 μ mol/g); however, the concentration of adsorbed NO increased significantly for the K-promoted catalyst (229 μ mol/g) and was the highest for CoKMoS/SiO₂ (304 μ mol/g).


Figure 3. Reaction pathway for the production of CH_3SH from COS or CS_2 . The main reaction steps are referred in the text as decomposition (1), disproportionation (2), and hydrogenation (3).

Only negligible concentrations of CO_2 were adsorbed on MoS_2/SiO_2 , while 23 and 21 μ mol/g of CO_2 were adsorbed on the KMoS/SiO₂ and CoKMoS/SiO₂ sulfide materials, respectively. Control experiments were also performed on pure SiO₂ after applying the same thermal treatment in H_2S/H_2 flow that was applied to the catalysts; adsorption of NO or CO_2 was not observed for pure SiO₂ carrier.

3.4. Comparison of Catalysts for the Synthesis of CH₃SH from COS. Previous studies of the synthesis of CH₃SH from COS implied that the reaction proceeds along the network presented in Figure 3.^{11,12} COS is transformed to CO and H₂S via decomposition and in parallel, to CO₂ and CS₂ via disproportionation. CS₂ is hydrogenated to CH₃SH, whereas the reverse water gas shift reaction transforms CO₂ into CO. The

Figure 4. Conversion of COS (a) and yield of CO (b) on sulfided MoS_2/SiO_2 (\Box), $KMoS/SiO_2$ (Δ), and $CoKMoS/SiO_2$ (\bigcirc). The feed contains 7.3 vol % COS and $H_2/COS = 2.4$ (3 MPa, GSHV = 89.2 min⁻¹).

Figure 5. Yield of CO_2 (a) and CS_2 (b) on sulfided MoS_2/SiO_2 (\Box), $KMoS/SiO_2$ (Δ), and $CoKMoS/SiO_2$ (\bigcirc). The feed contains 7.3 vol % COS and $H_2/COS = 2.4$ (3 MPa, $GSHV = 89.2 \text{ min}^{-1}$).

secondary reactions involving CH₃SH lead to CH₄ and CH₃SCH₃ as suggested by the results of this work discussed below.

The synthesis of CH₃SH from COS was investigated over SiO₂-supported Mo, KMo, and CoKMo sulphide catalysts (see Figure 4a). With MoS_2/SiO_2 the conversion of COS increased rapidly from 12 to 80% between 473 and 508 K. With KMoS/ SiO₂, the conversion of COS increased slower and did not reach the maximum value (>95%) until 623 K. The addition of cobalt increased the conversion of COS leading to the most active catalyst between 423 and 498 K. At temperatures higher than 498 K the conversions achieved with MoS₂/SiO₂ and CoKMoS/SiO₂ were both above 95%. The highest yield of CO was obtained on MoS_2/SiO_2 as shown in Figure 4b. Below 598 K, the yield of CO was higher on CoKMoS/SiO₂ than on KMoS/SiO₂ while the reverse was observed at higher temperature. On the three catalysts, the yield of CO increased with temperature to a maximum value before declining. The temperature for the maximum yield of CO varied from 543 K with MoS₂/SiO₂, to 633 K with KMoS/SiO₂ and 528 K on CoKMoS/SiO₂.

The yield of CO₂ is shown in Figure 5a. The highest yield was observed with CoKMoS/SiO₂ in the whole temperature range. With KMoS/SiO₂ the CO₂ yield was the second highest, whereas the lowest yield of CO₂ was observed with the unpromoted Mo sulfide catalyst. Three regions of the catalytic behavior can be distinguished in Figure 5a, that is, steady CO₂ yield increase (423–513 K), constant CO₂ yield (to 550 K), and finally CO₂ yield increase (>530 K). Very low yields of CS₂ were observed as shown in Figure 5b. The highest CS₂ yield (10%) was obtained with KMoS/SiO₂ at 523 K. Over the other systems, the maximum

 CS_2 yield was seen at 473 K, that is, 8% on CoKMoS/SiO₂ and just 1% on MoS₂/SiO₂.

A strong effect of the catalytic formulation was found on the yield of methanethiol (see Figure 6a). With MoS_2/SiO_2 the yield of methanethiol increased only to 7% at 518 K and then decreased again. With KMoS/SiO₂, the yield of methanethiol reached 18% at 603 K and did not significantly change with further increasing temperature. With CoKMoS/SiO₂, the yield of CH₃SH increased steeply from 423 to 513 K, then remained constant and increased again above 558 K reaching a maximum of 35% at 628 K. Figure 6b shows the yield of methane. The formation of CH₄ starts at 528 K on the unpromoted molybdenum catalyst, 633 K on KMoS/SiO₂, and 588 K on CoKMoS/SiO₂. In all cases, the yield of methane increased with reaction temperature.

3.5. Synthesis of CH₃SH from COS: Varying H₂/COS Ratio. Clearly, the CoKMoS/SiO₂ system had the best performance with respect to the rate of COS conversion and the yield of methanethiol. Therefore, the effect of H₂/COS ratio was further studied on CoKMoS/SiO₂. Figure 7a shows that below 523 K, increasing H₂/COS ratio leads to an increase in the conversion of COS. Above that temperature, the conversion of COS was higher than 90%, regardless of the H₂/COS ratio applied. Similarly, the yield of CO increased by increasing the H₂/COS ratio as shown in Figure 7b.

The yield of CO₂ (Figure 8a) was independent of the H₂/COS ratio up to 483 K. Above that temperature, raising the H₂/COS ratio lowered the yield of CO₂. Formation of CS₂ was detected only at temperatures between 423 and 525 K and clearly decreased with increasing H₂/COS ratio as shown in Figure 8b.

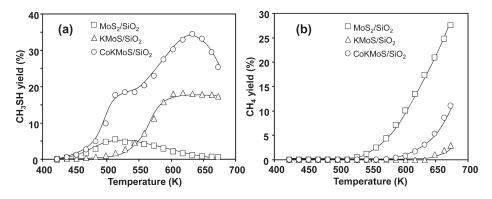
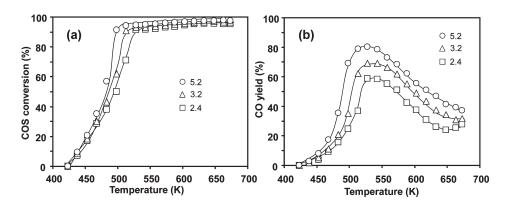
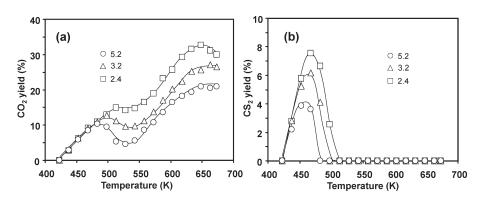
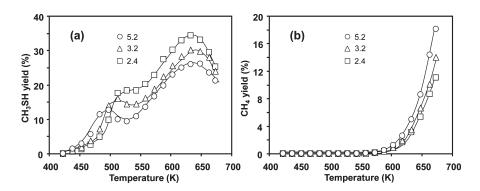
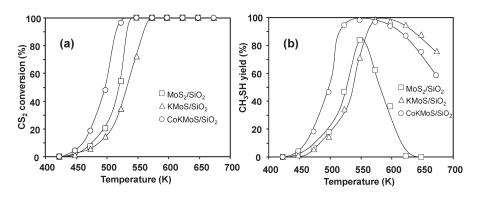




Figure 6. Yield of CH₃SH (a) and CH₄ (b) on sulfided MoS₂/SiO₂ (\Box), KMoS/SiO₂ (Δ), and CoKMoS/SiO₂ (\bigcirc). The feed contains 7.3 vol % COS and H₂/COS = 2.4 (3 MPa, GSHV = 89.2 min⁻¹).

Figure 7. Conversion of COS (a) and yield of CO (b) on sulfided CoKMoS/SiO₂ at H₂/COS ratio of 5.2 (\bigcirc), 3.2 (\triangle), and 2.4(\square). The feed contains 8 vol % COS and H₂/H₂S = 4.3 (3 MPa, GSHV = 89.2 min⁻¹).


Figure 8. Yield of CO₂ (a) and CS₂ (b) on sulfided CoKMoS/SiO₂ at a H₂/COS ratio of 5.2 (\bigcirc), 3.2 (\triangle), and 2.4 (\square). The feed contains 8 vol % COS and H₂/H₂S = 4.3 (3 MPa, GSHV = 89.2 min⁻¹).

The yield of CH₃SH increased by raising the H_2/COS ratio in the range 423–500 K (Figure 9a). Above this temperature, however, higher H_2/COS ratio led to lower yield of methanethiol. The yield of methane (Figure 9b) increased quickly above 598 K and was favored by increasing H_2/COS ratio.


3.6. Synthesis of CH₃SH from CS₂. Full conversion of CS_2 was achieved at 573 K as presented in Figure 10a. At lower temperatures, the highest CS_2 conversion was observed on CoKMoS/SiO₂ followed by the not promoted catalyst, and the KMoS/SiO₂ system led to the lowest CS_2 conversion. Figure 10b shows that the yield of methanethiol rapidly increased at temperatures

above 573 K to a maximum value. On the unpromoted catalyst, the maximum yield of methanethiol was 84% at 548 K and then it decreased quickly to 0 at 623 K. On the K-containing catalyst the maximum CH₃SH yield of 98% was reached at 573 K followed by a steady decrease to 76% at 673 K. Using the CoKMo/SiO₂ catalyst, the maximum yield of CH₃SH (98%) was reached at 548 K, and it decreased to 58% at 673 K.

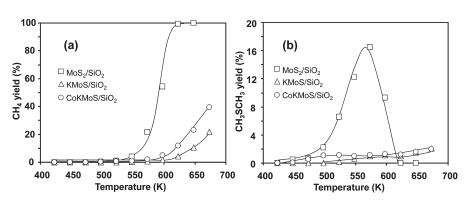

With all three catalysts, sulfided MoS_2/SiO_2 , $KMoS/SiO_2$, and $CoKMoS/SiO_2$, only methane and dimethyl sulfide (CH_3SCH_3) were formed as byproducts in the synthesis of CH_3SH from CS_2 . Figure 11a shows that for each catalyst the yield of CH_4 started

Figure 9. Yield of CH₃SH and CH₄ on sulfided CoKMoS/SiO₂ at a H₂/COS ratio of 5.2 (\bigcirc), 3.2 (\triangle), and 2.4 (\square). The feed contains 8 vol % COS and H₂/H₂S = 4.3 (3 MPa, GSHV = 89.2 min⁻¹).

Figure 10. Conversion of CS₂ (a) and yield of CH₃SH (b) on sulfided MoS₂/SiO₂ (\Box), KMoS/SiO₂ (Δ), and CoKMoS/SiO₂ (\bigcirc). The feed contains 8.5 vol % CS₂ and H₂/CS₂ = 5.9 (3 MPa, GSHV = 89.2 min⁻¹).

Figure 11. Yield of CH₄ (a) and CH₃SCH₃ (b) on sulfided MoS₂/SiO₂ (\Box), KMoS/SiO₂ (Δ), and CoKMoS/SiO₂ (\bigcirc). The feed contains 8.5 vol % CS₂ and H₂/CS₂ = 5.9 (3 MPa, GSHV = 89.2 min⁻¹).

increasing at the temperature corresponding to the decline in the yield of CH₃SH. Thus, the decrease in CH₃SH yield at temperatures higher than 548 K was due to CH₃SH reduction to methane. With MoS₂/SiO₂, the yield of methane increased rapidly above 548 K and reached almost 100% at 623 K. The formation of methane was significantly decreased by the presence of potassium in the KMoS/SiO₂ catalysts. The addition of Co to the KMoS/SiO₂ catalyst, however, slightly increased the formation of CH₄ again. This methane formation on both promoted catalysts started at 598 K and increased up to 673 K to yield of 22 and 40% on KMoS/SiO₂ and CoKMoS/SiO₂, respectively. It is shown in Figure 11b that significant amounts of CH₃SCH₃ were observed only over MoS₂/SiO₂ where the CH₃SCH₃ yield increased up to

16.5% at 573 K and decreased at higher temperatures. Over the other systems the yield of CH_3SCH_3 was lower than 2% over the evaluated temperature range.

4. DISCUSSION

4.1. Effect of the Catalytic Formulation on the Synthesis of CH_3SH from COS. Let us analyze first the activity observed with MoS_2/SiO_2 and then describe the effects of the K- or Co and K-promotion. The conversion of COS which increases between 423 and 523 K is closely related to the yield of CO showing a parallel tendency. The yield of the other products, in contrast, remains rather low. This indicates that the decomposition of

COS to CO has the highest reaction rate between 423 and 523 K on MoS_2/SiO_2 . Relatively stable yields of CO and CO₂ were observed between 523 and 548 K suggesting that in this narrow temperature range, the relative rates of COS disproportionation and decomposition are constant. At higher temperatures the linearly increasing yield of CO₂ coupled with a decreasing CO yield indicates that the COS disproportionation becomes faster than the decomposition. Hence, we conclude that the disproportionation of COS has a higher activation energy than its decomposition. The yield of CS₂ is zero above 500 K, that is, it was consumed faster than formed. Thus, we conclude that CS₂ hydrogenation to CH₃SH is faster than COS disproportionation.

The addition of potassium to the catalyst decreases the conversion of COS, but it does not slow down all reaction steps equally. The much lower yield of CO observed with KMoS/SiO₂ than with MoS₂/SiO₂ below 623 K suggests that the decomposition of COS is drastically reduced by potassium. The yield of CO₂, however, is much higher on the K-containing catalyst than on the unpromoted counterpart pointing to an increase in the rate of the COS disproportionation. In line with this statement, the yield of CS₂ is significantly higher with KMoS/SiO₂ than with MoS_2/SiO_2 . The subsequent reactions are retarded by potassium to different extent. Note that the yield of CS₂ is negligible on MoS_2/SiO_2 , whereas the yield of CH₃SH increases up to 5% at 500 K. This indicates that the hydrogenation of CS₂ to CH₃SH is fast. Interestingly, for the K-promoted catalysts the relatively high yield of CS₂ at 523 K is not accompanied by a high CH₃SH yield relative to the unpromoted system. Also, the formation of CH₄ ceased. Hence, the presence of potassium blocks or strongly retards the hydrogenation steps. The production of CH₃SH is less affected than the reduction to CH₄.

It is known that the reaction of syngas on MoS_2 yields hydrocarbons, whereas alcohols are selectively obtained on adding potassium to the catalytic formulation.^{18,19} This observation seems to be analogous to the enhanced selectivity of H₂S-syngas to methanethiol on K-containing sulfides⁹ as the carbon-heteroatom bonds are not cleaved in the presence of potassium. From another point of view, note that the hydrogenation of CS₂ to CH₃SH and the further reduction to CH₄ requires the cleavage of C–S bonds. From this perspective, the decelerating effect of potassium on the C–S bond cleavage observed in this work is consistent with investigations addressing hydrodesulfurization (HDS). The results of those investigations indicate that potassium reduces the HDS activity of Mo-sulfide catalyst for model molecules and real oil feeds.^{20,21}

The formation of the CoKMoS/SiO₂ catalyst by adding cobalt increases the conversion of COS. Comparing the product yield observed with KMoS/SiO2 and CoKMoS/SiO2, the variation of the yields of CO, CS_2 , and CO_2 show that the increased rates are due to the acceleration of two parallel reactions, that is, the decomposition and the disproportionation of COS. Interestingly, the yield of CO, remains lower on CoKMoS/SiO2 than on MoS_2/SiO_2 (the yield of CO is even the lowest and the CO₂ yield the highest on CoKMo/SiO₂ of all catalysts above 600 K) indicating that potassium blocks the disproportionation pathway without cobalt reversing this blockage. The subsequent hydrogenation steps to CH₃SH and CH₄ are also accelerated by the cobalt promotion. In line with this accelerated disproportionation and subsequent hydrogenation, the yield of CS₂ reached a maximum value at lower temperatures than with other catalysts. In consequence, the yield of and the selectivity to CH₃SH is the highest with the double promoted MoS₂ catalyst. They decline slowly only

above 650 K because of the enhanced reduction of CH_3SH to methane.

4.2. Effect of the Catalytic Formulation on the Synthesis of CH_3SH from CS_2 . The reactions of CS_2 and H_2 on the unpromoted and the (Co)K-promoted catalysts confirm that the addition of potassium decreases the rate of CS2 hydrogenation, whereas the presence of cobalt increases it, yielding only CH₃SH below 550 K. Above 550 K the CH_3SH yield drops with $MoS_2/$ SiO₂ because of CH₄ formation. CH₃SH hydrogenation is nearly blocked with KMoS/SiO₂ indicating that the presence of K⁺ cations blocks hydrogenation, while Co does hardly enhance CH₃SH hydrogenation, that is, it seems to remain less strongly adsorbed at the site of hydrogenation than on MoS_2/SiO_2 . The significant formation of CH₃SCH₃ between 500 and 600 K with the latter catalyst and its disappearance in parallel to methane formation suggests that CH₄ is formed in a consecutive reaction from CH₃SCH₃ or as a parallel pathway (see Figure 3) on identical catalytic sites. The disappearance of these sites by addition of promoting atoms allows us to conclude that these sites are related to accessible Mo cations.

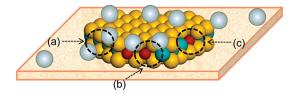
4.3. Effect of the H₂/COS Ratio on the Synthesis of CH₃SH on CoKMo/SiO₂. Increasing H₂/COS ratio led to the enhancement of the COS hydrodecomposition as seen from the increasing yield of CO, that is, $[COS + H_2 \rightarrow CO + H_2S]$. The increased rate of CO formation diminished the concentration of COS for the disproportionation reaction $[2COS \rightarrow CS_2 + CO_2]$. The positive influence of the hydrogen concentration suggests that all reactants are absorbed and that the two pathways follow the probability of finding a reaction partner on the sulfide surface.

Below 500 K higher partial pressures of H_2 enhanced the rate to $CH_3SH [CS_2 + 3H_2 \rightarrow CH_3SH + H_2S]$, while above accelerated rates of COS hydrodecomposition reduce the availability of CS_2 , reducing so the rates to CH_3SH . It indicates that the energies of activation of the COS hydrodecomposition must be higher than that of CS_2 hydrogenation.

4.4. Role of the MoS₂ Phase and the Promoters. The X-ray diffractograms of the crystalline phases are reported from catalysts that were used in steady state operation after sulfidation of the oxide precursor. The catalytic experiments were also stopped to analyze the catalyst after different periods of reaction time, and the same XRD patterns for each catalyst were observed indicating the high stability of the investigated catalytic materials. In the active sulfide state all catalysts showed the MoS₂ phase. In addition MoO₂ was also detected with MoS₂/SiO₂, and the formation of K₂SO₄ was observed on the K-containing catalysts.

The X-ray diffractograms of the oxide precursor suggest that relatively large crystals (average diameter of 93 nm) are formed upon supporting MoO₃ on SiO₂. After the sulfidation procedure, the molybdenum is effectively reduced to Mo⁴⁺. The large crystals, however, are not completely sulfided, which resulted in a mixture of MoS₂ and MoO₂, the latter species having an average diameter slightly above 80 nm. Therefore, it is reasonable to assume that the MoS₂ formation starts from the surface and that the reduction of molybdenum is not correlated with the sulfide formation. While the presence of K₂SO₄ is startling at first it is highly unlikely that it catalyzes any of the reactions discussed here, because it is highly stable and difficult to reduce.²² Indeed, it has been observed that the formation of surface sulfate species decreased the conversion of CS₂ in reactions carried out on Al₂O₃ or TiO₂ supports.²³

As the promoters, K or Co–K modify the behavior of the catalyst without changing the dominating MoS₂ phase. We conclude


in agreement with the literature that K^+ cations do not occupy specific sites in the catalyst, but are randomly distributed on the surface of support and the active sulfide phase.^{8,10} Thus, some K^+ cations are associated with the sulfide and others are deposited on the support. It is also possible that not all supported MoS₂ is promoted by potassium. This random distribution of alkali promoter leads in consequence to the formation of two MoS₂ phases, that is, K-free and K-decorated MoS₂. K^+ cations not associated with MoS₂ agglomerates to form Mo-free crystalline species on silica, for example, K₂SO₄ as observed in this work. Interestingly, on Al₂O₃, K₂SO₄ does not form probably because of the stronger interaction of K⁺ cations with alumina.¹²

Different catalytic behaviors have been proposed for the two different phases.^{11,12} The K-free MoS_2 catalyzes mainly the COS decomposition and the hydrogenation of CH₃SH, whereas the K-promoted phase hinders these two reactions and promotes the disproportionation of COS. These assignments are consistent with what is observed in this work. The origin of this effect has been explained by assigning the role of adsorption center to K⁺ cations. Accordingly, the NO adsorption increases from 69 to 230 μ mol g⁻¹ by adding 8.8 wt % of potassium in the studied catalysts. This increase of adsorption sites concentration is not reflected neither in the COS decomposition nor in the CS₂ hydrogenation. The only reaction enhanced with the K-promotion is the disproportionation of COS. This strongly suggests that the adsorption sites created by potassium differ from the Mocoordinatively unsaturated sites (Mo-CUS). The K-containing sites are active for disproportionation, but reduce the concentration of Mo-CUS and so limit reactions catalyzed by accessible Mo cations. For a detailed discussion of the nature of the K-containing active sites see ref 12.

On the other hand, Co is a very specific promoter of Mo sulfide. It is well-known that Co interacts with MoS_2 forming the CoMoS phase, in which a fraction of Mo sites at the edges of the MoS_2 slab is replaced by Co.²⁴ This Co-Mo-S association is favored at Co/Mo molar ratios of around 0.5, whereas Co-sulfides form at higher contents of promoter. In this work an amount of Co below the maximum Co/Mo ratio for the formation of the Co-Mo-S phase was added to the Mo catalyst. Thus, we can assume that in the CoKMoS/SiO₂ catalyst the CoMoS phase is formed in agreement with the literature.²⁵ We cannot deduce from the present results whether or not Co incorporation occurs with preference on either MoS_2 or the K-decorated MoS_2 . It is likely that cobalt decorates both MoS_2 -like phases because all reaction steps are accelerated by Co promotion.

Considering that all reactions rates are accelerated and assuming that accessible Co is located at least in the nominal concentration at the edges of MoS_2 slabs, we deduce that all the reaction steps occur at the edges of MoS_2 . To influence the catalytic performance of the MoS_2 phase, at least part of the K⁺ cations must be located near the MoS_2 slab edges. Considering that K⁺ enhances the O–S exchange,¹² it is highly likely that the K⁺ cations enhance the exchange on the edge of MoS_2 slabs because these sulfur atoms are much more labile than sulfur in the basal planes.²⁶

The influence of cobalt on MoS₂-based catalysts has been extensively studied for hydrotreating catalysts. Two main effects are attributed to Co-promotion, that is, increasing the concentration of CUS and facilitating the activation of H₂.²⁷ For the catalysts studied in this work, NO adsorption shows that the addition of Co increases the adsorption of NO from 230 to 304 μ mol g⁻¹. Thus, the enhanced activity of the CoKMo/SiO₂

Figure 12. Schematic representation of a K- and Co-promoted MoS_2 slab. K^+ cations, Co, S, and Mo atoms are presented in white, red, yellow, and blue spheres, respectively. K^+ -decorated site for COS disproportionation without Mo-CUS (a); potential active sites for all reactions promoted with Co and K^+ (b); Co-promoted hydrogenation and hydrogenolysis sites (c).

catalyst can be related to the increase of CUS in the MoS_2 edges¹⁶ as it has been done for the synthesis of alcohols from syngas on K-doped Mo sulfides.²⁸

A schematic view of the K⁺- and Co-promoted MoS₂ slabs is presented in Figure 12. While we assume that the K⁺ cations are distributed over the material surface, only those deposited near the slab edges are relevant for the catalytic performance. The K-containing adsorption sites without Mo-CUS (a) would catalyze the disproportionation of COS. The sites containing both Co and K⁺ (b) in principle catalyze COS disproportionation and decomposition as well as hydrogenation steps. However, the K⁺ cations would act as weak adsorption sites decreasing the rate of hydrogenation by adsorbing more weakly the reaction intermediates. Finally, the MoS₂–CUS in the MoS₂ edge promoted only by Co would catalyze hydrogenation and C–S bond cleavage.

The enhancing effect of cobalt in the hydrogenation and hydrogenolysis steps is not surprising because the same effect has been observed in hydrotreating applications. The promotion of the disproportionation step can be attributed to the increase of oxygen and sulfur mobility in line with the known Co effect of decreasing the binding energy between Mo and the heteroatom.²⁹ On the other hand, the formation of CH_3SCH_3 on MoS_2/SiO_2 implies that two CH₃S- fragments adsorbed on adjacent Mo-CUS combine before desorption. However, the hydrogenolysis to methane is faster than the recombination to CH₃SCH₃ above 573 K. On the K-containing catalysts, the occurrence of two Mo-CUS would be less probable because of the blocking of such sites by K⁺. Readsorption of CH₃SH, however, cannot be ruled out as one of the critical steps leading to the formation of CH₃SCH₃. K⁺ cations would in that case reduce the probability that CH₃SH reacts further.

Final evidence of the different adsorption abilities of Mo-CUS and K⁺ cations is given by CO₂ adsorption. On MoS₂/SiO₂, the uptake of CO₂ is negligible in accordance with reports that CO₂ does not adsorb on MoS₂.¹⁷ In contrast, the sulfide KMo/Al₂O₃ catalyst adsorbs 23 μ mol g⁻¹, which points to CO₂ adsorption involving the alkali atoms in agreement with ref 30. We speculate at present that such adsorption of the same concentration of CO₂ on the sulfide CoKMoS/Al₂O₃ catalyst strongly suggests that the CO₂ interacts exclusively with K⁺ cations, and not with CUS created by the incorporation of Co. The increased concentration of CUS on transition metals after Co-promotion is evidenced by the increase in the NO uptake by around 30%. This value is consistent with the increase of CUS concentration of 25–33% found in Al₂O₃-supported MoS₂ after promotion with Ni reported in refs 31,32.

5. CONCLUSIONS

The CH₃SH synthesis was carried out from COS/H₂ and CS₂/H₂ mixtures catalyzed with Mo, K–Mo, and Co–K–Mo sulfide catalysts supported on SiO₂. On unpromoted MoS₂, the (undesired) COS decomposition leading to CO and the hydrogenation of CH₃SH to CH₄ are favored and are associated with the presence of the highly reactive accessible Mo cations. The promotion with K⁺, decorating supported MoS₂ and CoMoS particles, accelerates the COS disproportionation by providing sites for a facile exchange of oxygen and sulfur (presumably via surface mixed carbonates containing also sulfur atoms) and so reduce indirectly the formation of CO by COS decomposition. Note that also the addition of the more Lewis acidic Co cation increases the rate of C–S bond cleavage, therefore, it does not seem to stabilize carbonate structures.

The promotion with potassium also retards all steps requiring hydrogen, so decreasing the formation of methane. However, the formation of CH_3SH is affected less leading to the optimum yield. Adding Co accelerates all individual steps in the reaction network. The CH_4 formation rate is only enhanced at higher temperatures hardly limiting the temperature window in which high yields of methanethiol are achievable. Minimizing the H_2 partial pressure allows further optimization of the CH_3SH selectivity.

AUTHOR INFORMATION

Corresponding Author

*Fax: +49/89/28913544. E-mail: johannes.lercher@ch.tum.de.

Author Contributions

[†]The first two authors contributed equally to this work.

Funding Sources

The authors gratefully acknowledge Evonik Industries AG (Germany) for partial financial support of this work.

ACKNOWLEDGMENT

The authors gratefully acknowledge Evonik Industries AG (Germany) for fruitful discussions.

REFERENCES

(1) Sauer, J.; Boeck W.; von Hippel, L.; Burkhardt, W.; Rautenberg, S.; Arntz, D.; Hofen, W. U.S. Patent 5 852 219, 1998.

(2) Mashkin, V.; Kudenkov, V.; Mashkina, A. Ind. Eng. Chem. Res. 1995, 34, 2964–2970.

(3) Olin, J.; Buchholz, B.; Loev, B.; Goshorn, R. U.S. Patent 3 070 632, 1962.

- (4) Haines, P. U.S. Patent 4 449 006, 1984.
- (5) Ratcliffe, C.; Tromp, P. U.S. Patent 4 668 825, 1987.
- (6) Ratcliffe, C.; Tromp, P.; Wachs, I. U.S. Patent 4 570 020, 1985.
- (7) Mul, G.; Wachs, I.; Hirschon, A. Catal. Today 2003, 78, 327–337.
- (8) Zhang, B.; Taylor, S.; Hutchings, J. New J. Chem. 2004, 28, 471–476.

(9) Chen, A.; Wang, Q.; Li, Q.; Hao, Y.; Fang, W.; Yang, Y. J. Mol. Catal A: Chem. 2008, 283, 69–76.

(10) Kaufmann, C.; Gutiérrez, O.; Zhu, Y.; Lercher, J. Res. Chem. Intermed. 2010, 36, 211–225.

(11) Gutiérrez, O.; Kaufmann, C.; Hrabar, A.; Zhu, Y.; Lercher, J. J. Catal. **2011**, 280, 264–273.

(12) Gutiérrez, O.; Kaufmann, C.; Lercher, J. *ChemCatChem* **2011**, 3, 1480–1490.

(13) Chen, A.; Wang, Q.; Hao, Y.; Fang, W.; Yang, Y. Catal. Lett. 2007, 118, 295–299.

(14) Topsøe, H.; Clausen, B.; Massoth, F. Hydrotreating Catalysis

Science and Technology; Springer-Verlag: New York, 1996.

- (15) Bian, G.; Fu, Y.; Ma, Y. Catal. Today 1999, 51, 187–193.
- (16) Topsøe, N.; Topsøe, H. J. Catal. 1982, 77, 293-296.
- (17) Zmierczak, W.; Qader, Q.; Massoth, F. J. Catal. 1987, 106, 65-72.

(18) Lee, J.; Kim, S.; Lee, K.; Nam, I.; Chung, J.; Kim, Y.; Woo, H. Appl. Catal., A **1994**, 110, 11–25.

(19) Surisetty, V.; Hu, Y.; Dalai, A.; Kozinski, J. *Appl. Catal, A* **2011**, 392, 166–172.

(20) Kelly, J.; Ternan, M. Can. J. Chem. Eng. 1979, 57, 726-733.

(21) Verbruggen, N.; Knözinger, H. Langmuir 1994, 10, 3148-3155.

(22) Kasznoyi, A.; Hronec, M.; Delahay, G.; Ballivet-Tkatchenko, D.

Appl. Catal., A 1999, 184, 103–113.
 (23) Laperdrix, E.; Justin, I.; Costentin, G.; Saur, O.; Lavalley, J.;

(25) Laperarix, E.; Justin, I.; Costentin, G.; Saur, O.; Lavaney, J.; Aboulayt, A.; Ray, J.; Nédez, C. *Appl. Catal., B* **1998**, *17*, 167–173.

(24) Topsøe, N.; Topsøe, H. J. Catal. 1983, 84, 386-401.

(25) Iranmahboob, J.; Hill, D.; Toghiani, H. Appl. Catal., A 2002, 23, 99–108.

(26) Tauster, S.; Pecoraco, T.; Chianelli, R. J. Catal. 1980, 63, 515–519.
(27) Moses, P.; Hinnemann, B.; Topsøe, H.; Nørskov, J. J. Catal.
2009, 268, 201–208.

(28) Bao, J.; Fu, Y.; Bian, G. Catal. Lett. 2008, 121, 151-157.

(29) Byskov, L.; Nørskov, J.; Clausen, B.; Tøpsoe, H. Sulphur bonding in transition metal sulphides and MoS₂ based structures. In *Transition Metal Sulphides – Chemistry and catalysis*; Kluwer Academic Publishers: Dordrecht, Netherlands, 1998.

(30) Karolewski, M.; Cavell, R. Surf. Sci. 1989, 219, 261-276.

- (31) Hrabar, A.; Hein, J.; Gutiérrez, O.; Lercher, J. J. Catal. 2011, 281, 325–338.
 - (32) Gutiérrez, O.; Klimova, T. J. Catal. 2011, 281, 50-62.